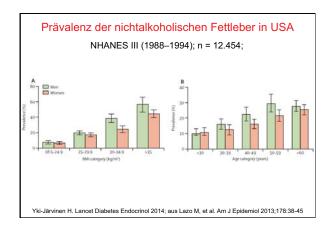
Ursachen, Therapie und Prävention
der nichtalkoholischen Fettlebererkrankung


Nicolai Worm

www.logi-methode.de
www.leberfasten.de
www.heilkraft-d.de

Was ist passiert?

Diagnostik


Transaminasen sind ungeeignet zur NAFLD-Diagnose!

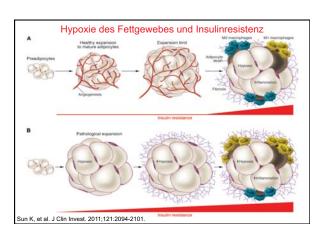
Prävalenz der NAFLD / NASH bei Typ-2-Diabetikern

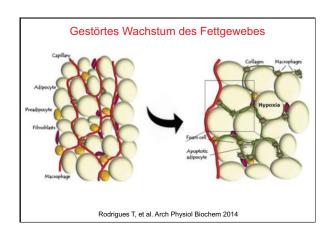
- 103 Typ-2-Diabetiker mit <u>normalen Transaminasen</u> AST (= GOT), ALT (= GPT) aus San Antonio, Texas
- Außer MetS/T2DM keine manifesten Erkrankungen
- · Diagnose mit MRT
 - => Prävalenz der NAFLD = 76 %
 - => Prävalenz der NASH = 56 %

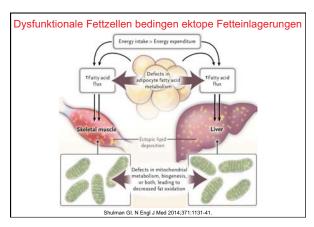
Portillo Sanchez P, et al. J Clin Endocrinol Metab. 2014 Oct 10; epub ahead of print

Pathophysiologie

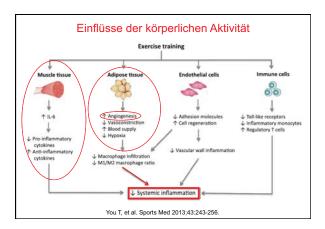
Woher stammt das Fett in der Leber?

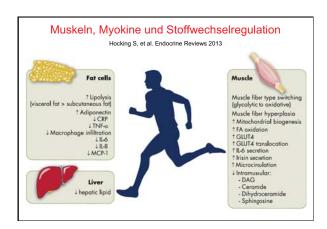

Bei übergewichtigen Patienten mit nicht-alkoholischer Fettleber (mit Hypertriglyceridämie u. Hyperinsulinämie) stammt das Fett in der Leber zu

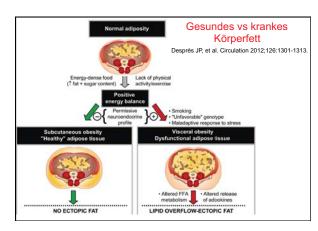

- 59 % aus der Lipolyse der Adipozyten
- 26 % aus der "de novo" Lipogenese (Kohlenhydrate)
- 15 % aus dem Nahrungsfett

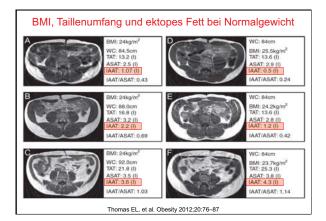

Donnelly KL, et al. J Clin Invest 2005;115:1343–1351

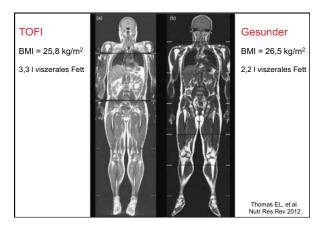
Gestörte Fettspeicherung, ektopes Fett und NAFLD

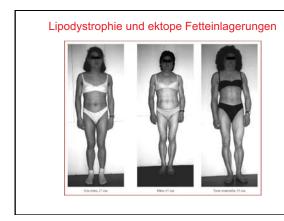








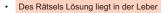




Lipodystrophie und Folgen

- Schwund des Unterhautfettgewebes
- Starke Fettansammlung (Kinn, Innenseite Oberarm, Achselhöhle)
- Männliches Erscheinungsbild bei Frauen
- Auffallend kräftige Muskulatur
- Fettstoffwechselstörung
- Bauchspeicheldrüsenentzündungen
- Fettleber mit erhöhten Leberwerten
- Störung der Blutzuckerregulation
- Acanthosis nigricans (Achselhöhlen, des Halses u. der Leistenbeugen)
- Bluthochdruck (nicht bei allen Patienten)
- Erhöhtes Risiko von Arteriosklerose, Herz- u. Hirninfarkt u. Verschlüssen
- Hormonelle Störungen
- Nervenkompressionssyndrome

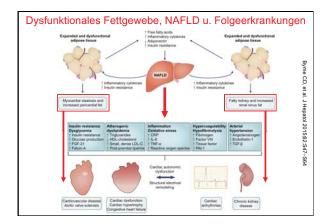
Mediziolische Klinik mit Schwerpurkt Gestroerderologie, Hepatologie und Endokrinologie Charité - Universitätsmedian Berlin, Charité Campus Mitte



Folgeerkrankungen

Gesund trotz Übergewicht – die Geheimnisse der "glücklichen Dicken"

"Der Body-Mass-Index (BMI) allein eignet sich nicht für eine scharfe Trennung zwischen 'gesund' und 'krank'."

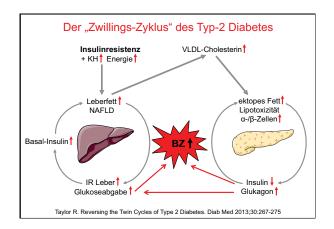


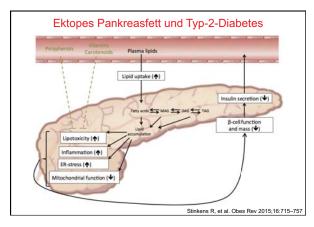
"Nur wenn die Leberzellen verfettet sind, verschlechtert sich auch die Prognose des Übergewichtigen. So wirkte sich der Fettgehalt der Leber in Studien wesentlich deutlicher auf die Insulinsensitivität bzw. die Inzidenz eines Typ-2-Diabetes aus als die Menge des Bauchfetts ganz allgemein. Außerdem ist zwischen den verfetteten Leberzellen und dem Auftreten von Gefäßschäden nachgewiesen – und zwar unabhängig von weiteren atherosklerotischen Risikofaktoren."

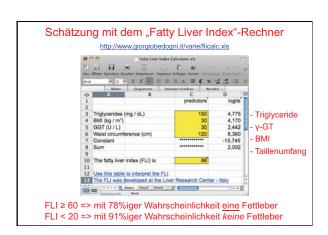
Ektope Fetteinlagerungen und Folgen

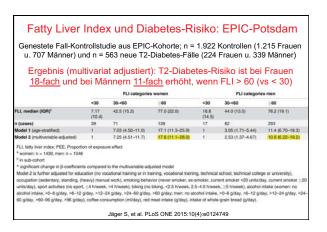
- · erhöhtes Insulin
- erhöhter Nüchtern-Blutzucker
- erhöhter Blutdruck
- erhöhtes VLDL und Triglyceride
- erniedrigtes HDL-Cholesterin
- · mehr kleine dichte LDL-Partikel
- gestörte Blutgerinnung
- erhöhte Harnsäure
- Nierenfunktionsstörungen
- · etc.

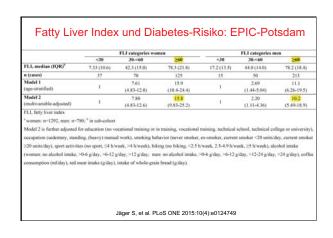
Review NAFLD: A multisystem disease Christopher D. Byrne^{1,2,a}, Giovanni Targher³ ¹Natrition and Metabolium, Foculty of Medicine, University of Southampton, Southampton, UK, ⁵Southampton National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, UK, ⁵Division of Endocrinology, Diabetes and Metabolium, Department of Medicine, University and Acienda Oppedaliera Universitatia Integrate of Verona, Urona, Italy Summary Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries that is predicted to become also the most frequent indication for liver transplantation by 2030. Over the last decade, it has been shown that the clinical burden of NAFLD is not only confined to liver-related morbidity and mortality, but there is now growing evidence that NAFLD is a multisystem disease, affecting extra-hepatic organs and regulatory pathways. For example, NAFLD increases risk of type 2 diabetes mellitus (T2DM), cardiovascular (CVD) and cardiac diseases, and chronic kidney disease (CKD). Although the primary liver pathology in NAFLD affects hepatic structure and function to cause morbidity and mortality from cirrhosis, liver failure and hepatocellular carcinoma, the majority of deaths among NAFLD patients are attributable to CVD. J Hepato 2015;62:947–864

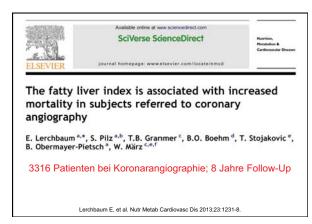

Inzidenz von Typ-2-Diabetes in Abhängigkeit von Übergewicht und NAFLD in China


4.736 gesunde Teilnehmer, 4 Jahre Follow-up = 17.223 Personen-Jahre, 380 Fälle von T2DM (Inzidenzrate = 8,0 %); mittl. Alter = 57 Jahre;

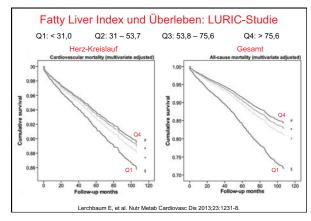

ВМІ	NAFLD	n	T2DM	Incidence rate ¹ (%)	RR ² (95%CI)
< 24	Control	2383	85	3,6	1.0
	NAFLD	616	81	13.1	3.407 (2.461-4.717)
About 24	Control	712	35	4.9	1.0
	NAFLD	537	102	19.0	3.455 (2.269-5.262)
About 28	Control	229	15	6.6	1.0
	NAFLD	259	62	23.9	3.438 (1.841-6.420)

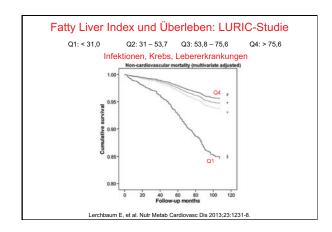

BMI-Cut-Off für Übergewicht bei Asiaten ist ≥ 24!


Li WD, et al. World J Gastroenterol 2015;21: 9607-9613

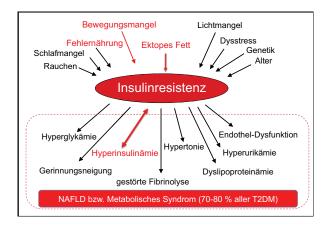


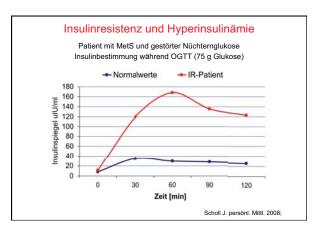


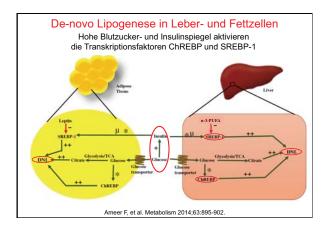




Woher stammt das Fett in der Leber?


Donnelly KL, et al. J Clin Invest 2005;115:1343-1351

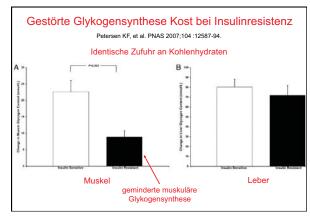

Bei übergewichtigen Patienten mit nicht-alkoholischer Fettleber (mit Hypertriglyceridämie u. Hyperinsulinämie) stammt das Fett in der Leber zu

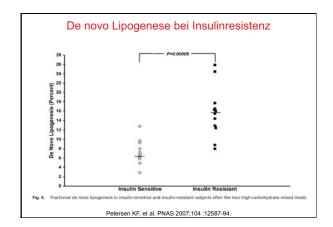

- 59 % aus der Lipolyse der Adipozyten
- 26 % aus der "de novo" Lipogenese (Kohlenhydrate)
- 15 % aus dem Nahrungsfett

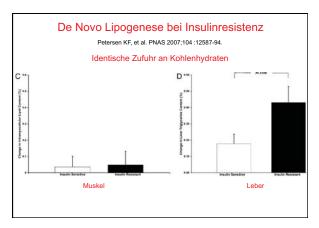
Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets¹⁻³

Jean-Mare Schwarz, Peter Linfoot, Daris Dare, and Karmen Aghajanian

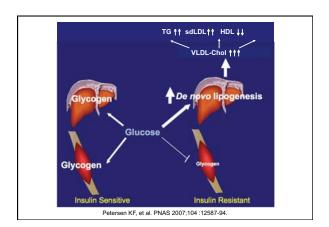
5 Tage eukalorische Diät in geschlossenem Stoffwechsellabor: kohlenhydrat-reich/fettarm vs kohlenhydratmoderat/fettmoderat bei insulinsensitiven und insulinresistenten Probanden


¹ From the Department of Nutritional Sciences and Toxicology, University of California, Berkeley (J-MS and KA), and the Department of Medicine, University of California, San Francisco (J-MS, PL, and DD).


Schwarz JM, et al. Am J Clin Nutr 2003;77:43–50

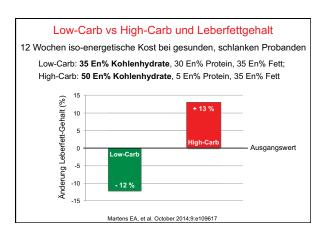


Cave! Insulinresistente haben bereits bei üblichen Kohlenhydratmengen eine deutlich gesteigerte de novo Lipogenese!



Cave!

Insulinresistente haben trotz Hyperinsulinämie eine gestörte Glykogensynthese in Muskel und Leber!


Kohlenhydratmenge und Kohlenhydratart

The Potential of a High Protein-Low Carbohydrate Diet to Preserve Intrahepatic Triglyceride Content in Healthy Humans

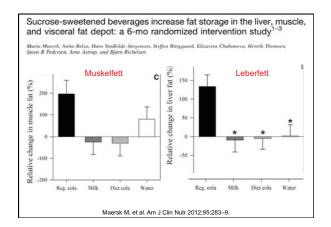
Eveline A. Martens*, Blandine Gatta-Cherifi*, Hanne K. Gonnissen, Margriet S. Westerterp-Plantenga

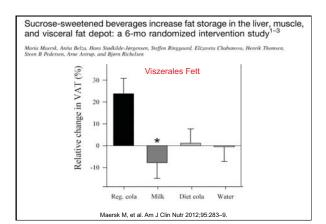
12 Wochen eukalorische Kost bei gesunden, schlanken Probanden: Low-Carb: 35 En% Kohlenhydrate, 30 En% Protein, 35 En% Fett; High-Carb: 50 En% Kohlenhydrate, 5 En% Protein, 35 En% Fett;

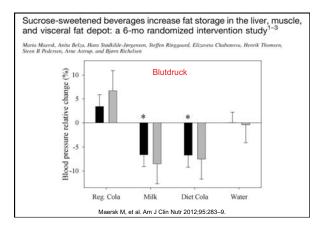
	Baseline		
	Low-Carb	High-Carb	
No. of subjects (M/F)	7 (4/3)	9 (3/6)	
Age (y)	23±5	25±5	
Baecke total score	9.4±1.0	8.9±1.1	
Height (cm)	173±8	170±9	
BW (kg)	67.6±6.6	64.5±8.2	
BMI (kg/m²)	22.6±2.0	22.3±2.1	
Martens EA, e	t al. October 2014;9:e109617		

Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study¹⁻³

Maria Maersk, Anita Belza, Hans Stodkilde-Jørgensen, Steffen Ringgaard, Elizaveta Chabanova, Henrik Thomsen, Steen B Pedersen, Arne Astrup, and Bjørn Richelsen

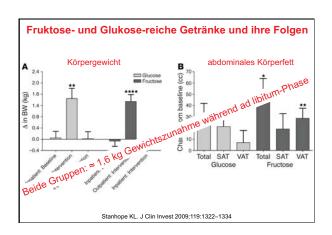

RCT bei 47 Übergewichtigen, 6 Monate täglich 1 Liter Test-Getränk; Cola mit 50 % Fruktose/50 % Glukose; Cola-Light; Milch mit 1,5% Fett;

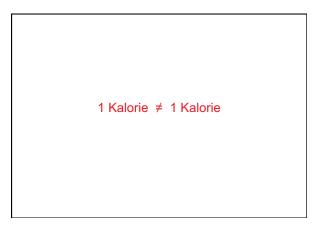

Composition and energy content of the 4 test drinks⁴


	Sucrose-sweetened		Aspartame-sweetened	
	regular cola	Milk	diet cola	Water
Carbohydrate (g/100 mL)	10.6	4.7	0	0
Protein (g/100 mL)	0	3.4	< 0.1	0
Fat (g/100 mL)	0	1.5	0	0
Energy (kJ/d)	1800	1900	15	0
Volume (mL)	1000	1000	1000	1000
Energy density (kJ/g)	1.8	1.9	0.015	0

¹ The subjects drank 1 L of 1 of 4 test drinks daily for 6 mo.

Maersk M, et al. Am J Clin Nutr 2012;95:283-9.

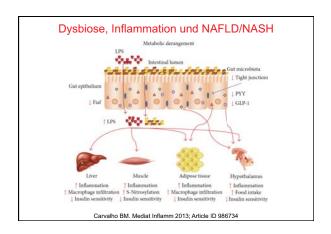

The Journal of Clinical Investigation http://www.jci.org Volume 119 Number 5 May 2009

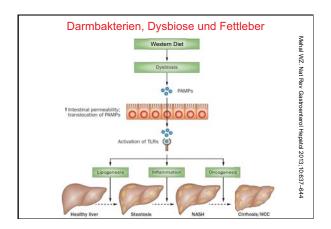

Consuming fructose-sweetened, not glucosesweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

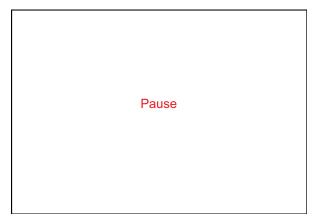
Kimber L. Stanhope, ^{1,2} Jean Marc Schwarz, ^{2,4} Nancy L. Keim, ⁵ Steven C. Griffen, ⁶ Andrew A. Bremer, ⁷ James L. Graham, ^{1,2} Bonnie Hatcher, ² Chad L. Cox, ² Artem Dyachenko, ⁵ Wei Zhang, ⁸ John F. McGahan, ⁸ Anthony Seibert, ⁸ Fonald M. Krauss, ⁸ Stall, ⁶ Chiu, ⁸ Ernst J. Schaefer, ⁶ Masumi Al, ⁶ Seiko Otokozwa, ⁶ Katsuyuki Nakajima, ^{6,6} Takamitsu Nakano, ⁶ Carine Beysen, ⁶ Marc K. Hellerstein, ^{6,6} Lars Berglund, ^{6,6} and Peter J. Havali ²

**Operational of Minicialar Biologianismos, School of Verlierinary Medicine, and "Operational of Notifician, USO, Duris, California, USA,
"College of Obtopolitic Medicine, Store University, Valleyo, California, USA, **USAS San Francisco, California, USA,
"Usased States Department of Agriculture Western Human Nutrition Research Center (sous, California, USA, "Upgrathment of Internal Medicine, USO, Socramento, California, USA, "Operationed of States Department of Pediatrics, School of Medicine, USO, Socramento, California, USA, "Upgrationed of Internal Medicine, USA, "Upgrationed of States Department of Agriculture Human Nutrition Research Center on Aging at 1nth University, and
"United States Department of Agriculture Human Nutrition Research Center on Aging at 1nth University, and
"United States Department of Agriculture Human Nutrition Research Center on Aging at 1nth University, and
"University School of Medicine, Boston, Massachambers, USA, "Pulgoristic Memory, California, USA, "Upgration, USA, "Upgration, Indiana, USA, "Upgration, India

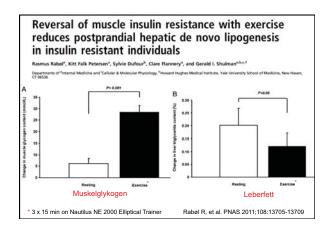
Study period	Setting	Duration		Diet	
Baseline	Inpatient	2 wk	Energy balance di	et 55% complex carb	ohydrate, 30% fat, 15% protei
Intervention	Outpatient	8 wk		diet and sugar-sweet irement positive e	ened beverages providing 25% nergy balance!
Intervention	Inpatient	2 wk	Energy balance d		ened beverage, 30% complex
	47 271	Glu	cose	Fruc	ctose
	Parameter	Male (n = 7)	Female (n = 8)	Male (n = 9)	Female (n = 8)
	Age (yr)	54 ± 3	56 ± 2	52 ± 4	53 ± 2
	Weight (kg)	88.4 ± 2.9	84.0 ± 4.5	89.3 ± 2.9	81.9 ± 4.2
	BMI (kg/m²)	29.3 ± 1.1	29.4 ± 1.3	28.4 ± 0.7	30.3 ± 1.0
	Waist circumference (cm)	98.9 ± 2.6	91.0 ± 4.0	97.3 ± 3.3	91.8 ± 4.4
	Body fat (%)	29.4 ± 1.1	43.2 ± 1.5	28.5 ± 1.3	39.6 ± 2.2
	TG (mg/dl)	148 ± 31	145 ± 23	131 ± 21	159 ± 30
	Total cholesterol (mg/dl)	179 ± 14	193 ± 10	176 ± 6	198 ± 15
	HDL (mg/dl)	36 ± 3	41 ± 3	39 ± 4	41 ± 3
	LDL (mg/dl)	124 ± 5	123 ± 11	107 ± 7	124 ± 15
	Glucose (mg/dl)	89 ± 2	89 ± 3	88 ± 1	90 ± 1
	Insulin (uU/ml)	14.3 ± 3.2	15.6 ± 2.9	16.3 ± 2.5	12.0 ± 1.6

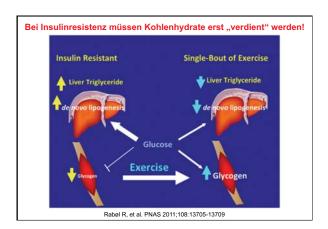

Sugar sweetened beverages and fatty liver disease: Rising concern and call to action


Manal F. Abdelmalek¹⁻⁰, Chris Day²

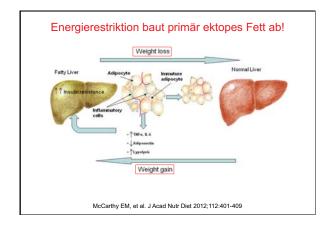

The potential danger of SSB, and in particular fructose, and its link with various metabolic disorders including NAFLD has been widely documented and counseling patients, particularly those with pre-existing metabolic syndrome and NAFLD, is prudent from a public health standpoint. Pending further investigation to support or refute the rising concerns, a call to action for health care providers to counsel patients at risk of or with diagnosed NAFLD on avoidance of SSB as a modifiable risk factor for NAFLD acquisition and progression, is warranted.

Dysbiose


Prävention der NAFLD



Raus aus der Kohlenhydratfalle...



Fazit

Insulinresistente müssen sich Kohlenhydratmahlzeiten erst durch vorherige intensive Muskelarbeit verdienen!

Therapie

Noch gibt es keine etablierte medikamentöse Therapie!

Wie gelingt eine möglichst gezielte und effektive Leberfett-Reduktion?

VLCD bzw. Formula-Diäten bei NAFLD

Reducing Liver Fat by Low Carbohydrate Caloric Restriction
Targets Hepatic Glucose Production in Non-Diabetic Obese
Adults with Non-Alcoholic Fatty Liver Disease

Haoyong Yu ¹, Weiping Jia ¹ and ZengKui Guo ²-*

¹ Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth
People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Centre of Diabetes,

² Endocrine Research Unit, Division of Endocrinology, Diabetes, Metabolism and Nutrition,
Department of Internal Medicine, Mayo Foundation, 5-194 Joseph, Rochester, MN 55905, USA

Leberfett und postprandiale hepatische Glukoseproduktion

8 Wochen Diät bei 8 nicht-diabetischen Übergewichtige mit NAFLD
Low-Carb (< 20 g KH/Tag) 800 kcal/Tag + Mikronährstoffsupplement

Yu H, et al. J Clin Med. 2014;3:1050-1063;

NAFLD und postprandiale hepatische Glukoseproduktion 8 Wochen Diät bei 8 nicht-diabetischen Übergewichtigen mit NAFLD Low-Carb (< 20 g KH/Tag) 800 kcal/Tag + Mikronährstoffsupplement

Parameters	Before	After	p	
body weight, kg	87.7 ± 3.8	80.9 ± 3.0	0.001	- 7 %
BMI, kg/m ²	32.0 ± 0.7	29.5 ± 0.4	0.0004	
waist, cm	100 ± 2.9	95.0 ± 1.2	0.04	
TG, mmol/L	1.85 ± 0.59	1.11 ± 0.34	0.04	
FFA, mmol/L	0.73 ± 0.03	0.57 ± 0.04	0.01	
HDL, mmol/L	1.28 ± 0.14	1.24 ± 0.11	0.29	
LDL, mmol/L	2.98 ± 0.29	3.14 ± 0.27	0.31	
ASQ fat, cm ²	321 ± 31	244 ± 21	0.005	
visceral fat, cm2	99 ± 10	65 ± 4	0.007	
liver fat, %	28.8 ± 7.2	9.5 ± 2.7	0.004	- 67 °

NAFLD und postprandiale hepatische Glukoseproduktion

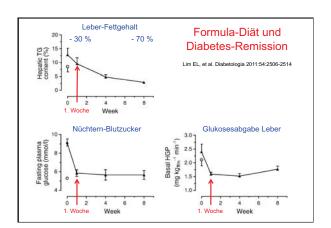
8 Wochen Diät bei 8 nicht-diabetischen Übergewichtigen mit NAFLD

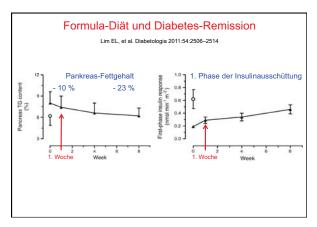
Low-Carb (< 20 g KH/Tag) 800 kcal/Tag + Mikronährstoffsupplement

Programment

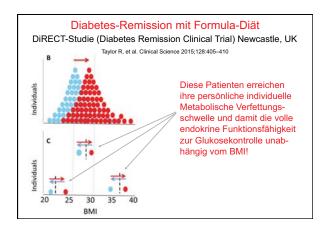
| Programment | Programment

Yu H, et al. J Clin Med. 2014;3:1050-1063;


Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol

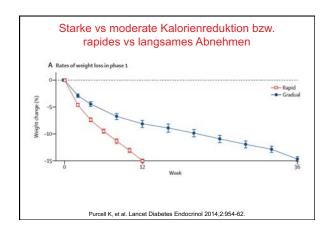

E. L., Lim·K. G. Hollingsworth·B. S. Aribisala· M. J. Chen·J. C. Mathers·R. Taylor

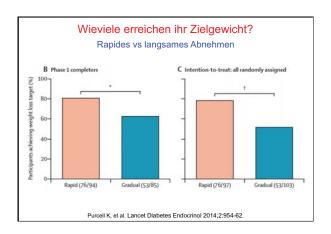
- 11 Patienten mit Typ-2-Diabetes seit < 4 Jahren, 104 kg, BMI 34, HbA1c 7,4%, nü-Glucose 166 mg/dl
- 8 Wochen Diät: 3 x Formula (600 kcal) + Gemüse ad-libitum (200 kcal)
 Formula-Nährstoffrelation (46 % KH, 33 % EW, 20% F); 60 g KH/Tag
- eingestellt mit oralen Antidiabetika (ohne Glitazone)

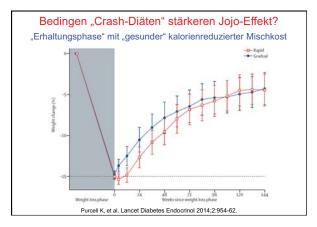

Lim EL, et al. Diabetologia 2011:54:2506–2514

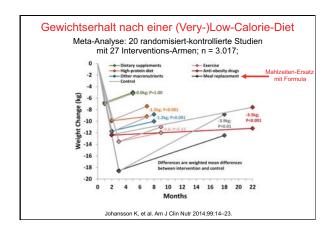
	Lim EL, et al.	Diabetologia 2011	:54:2506–2514		
Variable	Controls	Baseline	Week 1	Week 4	Week 8
Weight (kg)	101.5±3.4	103.7±4.5	99.7±4.5°	94.1±4.3*	88.4±4.3**
BMI (kg/m ²)	33.4±0.9	33,6±1.2	32.3±1.2*	30.5±1.2*	28.7±1.3*
Fat mass (kg)	36.2±2.7	39.0±3.5	36.6±3.6	31.7±3.7°	26.3±4.0°
ffm (kg)	64.7±3.8	64.7±3.0	63.2±3.1	62.4±3.0°	62.1±3.0*
Waist circumference (cm)	105.0±1.5	107.4±2.2	104.4±2.2°	99.7±2.4°	94.2±2.5*
Hip circumference (cm)	109.8±2.4	109.5±2.9	108.3±2.7*	105.0±2.6*	99.5±2.6*
WHR	$0.96\!\pm\!0.02$	$0.98\!\pm\!0.02$	0.97 ± 0.02	0.95 ± 0.01	0.95 ± 0.01
		nasse: - 2	,0 kg ,4 kg ,0 cm		

Variable	Controls	Baseline	Week 1	Week 4	Week 8
Weight (kg)	101.5±3.4	103.7±4.5	99.7±4,5°	94.1±4.3°	88.4±4.3*
BMI (kg/m ²)	33.4±0.9	33.6±1.2	32.3±1.2°	30.5±1.2*	28.7±1.3*
Fat mass (kg)	36.2±2.7	39.0±3.5	36.6±3.6*	31.7±3.7*	26.3±4.0°
ffm (kg)	64.7±3.8	64.7±3.0	63.2±3.1	62.4±3.0°	62.1±3.0*
Waist circumference (cm)	105.0±1.5	107.4±2.2	104.4±2.2*	99.7±2.4°	94,2±2.5*
Hip circumference (cm)	109.8±2.4	109.5 ± 2.9	$108.3 \pm 2.7^{\circ}$	105.0±2.6*	99.5±2.6*
WHR	0.96±0.02	0.98 ± 0.02	0.97 ± 0.02	0.95 ± 0.01	0.95±0.01
		8. Woche			
	Gew	richt: - 1	15,3 kg		
	Fettr	masse: - 1	12,7 kg		
	Taille		12,7 kg 13,2 cm		


The effect of rate of weight loss on long-term weight management: a randomised controlled trial


Katrina Purcell, Priya Sumithran, Luke A Prendergast, Celestine J Bouniu, Elizabeth Delbridge, Joseph Proietto


204 Teilnehmer (51 Männer, 153 Frauen); Alter: 18–70 Jahre, BMI 30 – 45;


- Phase 1: 12-wöchige schnelle Gewichtsreduktion vs 36-wöchige langsame Gewichtsreduktion zur Erreichung von 15 % Gewichtsverlust
- Schnell: 450 800 kcal/Tag mit drei Formula-Mahlzeiten pro Tag;
- Langsam: 400–500 kcal Defizit pro Tag mit "gesunder Mischkost" (15% E, 25–30% F, 55–60% KH) + Ersatz einer Mahlzeit/Tag mit identischer Formula
- Phase 2: 144-wöchige "Erhaltungsphase"; Ziel: 400–500 kcal Reduktion für alle mit "gesunder" Ernährung (15% E, 25–30% F, 55–60% KH)

Purcell K, et al. Lancet Diabetes Endocrinol 2014;2:954-62.

Increased De Novo Lipogenesis Is a Distinct Characteristic of Individuals With Nonalcoholic Fatty Liver Disease

Jennifer E. Lambert, 1 Maria A. Ramos-Roman, 2 Jeffrey D. Browning, 3 and Elizabeth J. Parks

¹Center for Human Nutrition, Divisions of ²Endocrinology and ³Digestive and Liver Diseases, University of Texas Southwester Medical Center, Dalas, Texas

As the understanding of NAFLD has evolved, scientists have questioned whether it is excess lipolysis or lipogenesis that causes fatty liver disease. The present data join the large number of studies currently available showing that elevated lipogenesis, in combination with excess adipose FA release, is a significant contributor to this condition. Excess lipolysis is found in other conditions such as hypertriglyceridemia and obesity, but the distinctive elevation of lipogenesis in NAFLD suggests a causative role. As a result, these data provide strong support for the recent emergence of carbohydrate restriction as a goal of dietary therapy. Whether lipogenesis as a target for pharmaceutical development will benefit fatty liver has yet to be determined.

Gastroenterology 2014;146:726-735

Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction¹⁻³

Jeffrey D Browning, Jonathan A Baker, Thomax Rogers, Jeannie Davis, Santhosh Satapati, and Shawn C Burgess

2 Wochen kalorienreduzierte Diät vs Low-Carb

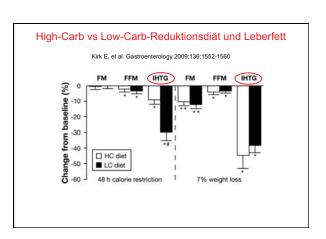
	Low-calorie diet $(n = 9)$	Low-carbohydrate diet $(n = 9)$	P value
Energy intake (kcal/d)	1325 ± 180	1553 ± 517	0.229
Diet composition			100
Protein (%)	16 ± 3	33 ± 4	< 0.001
Fat (%)	34 ± 6	59 ± 7	< 0.001
Carbohydrate (%)	50 ± 4	8 ± 5	< 0.001
Protein (g/d)	53 ± 12	121 ± 34	< 0.001
Fat (g/d)	49 ± 9	105 ± 44	0.002
Carbohydrate (g/d)	169 ± 33	26 ± 8	< 0.001
Fat intake (%)			
Saturated	42 ± 8	37 ± 4	0.134
Monounsaturated	37 ± 2	38 ± 6	0.634
Polyunsaturated	18 ± 7	15 ± 4	0.221

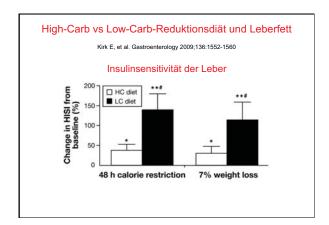
Browning JD, et al. Am J Clin Nutr 2011;93:1048-5

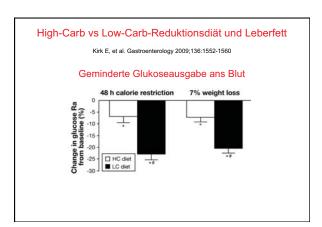
	Low-calorie	e diet $(n = 9)$	Low-carbohydrate diet $(n = 9)$		
	Before	After	Before	After	
Age (y)	47 ± 12 ⁸	-	42 ± 11	_	
Sex ratio (F:M)	6:3	-	7:2	-	
Liver biopsy					
NAFLD activity score	4.3 ± 1.8	_	5.8 ± 1.6	-	
Fibrosis stage	1.3 ± 1.4	-	0.8 ± 0.9	-	
BMI (kg/m ²)	34 ± 9	33 ± 9	36 ± 4	35 ± 4	
Body weight					
Absolute (kg)	96 ± 21 -4	4 kg 92 ± 20	97 ± 14 -5 kg	92 ± 15	
Fractional (%)	100	96 ± 1	100	95 ± 1	
Total cholesterol (mg/dL)	207 ± 29	204 ± 53	212 ± 34	175 ± 24	
Triglycerides (mg/dL)	154 ± 65	115 ± 46	215 ± 90	103 ± 34	
AST (U/L)	56 ± 28	15 ± 4	50 ± 18	17 ± 2	
ALT (U/L)	77 ± 49	81 ± 45	80 ± 51	98 ± 25	
AST:ALT ratio	0.8 ± 0.2	0.2 ± 0.1	0.7 ± 0.2	0.2 ± 0.1	
Fasting glucose (mg/dL)	122 ± 55	106 ± 21	113 ± 34	87 ± 14	

Dietary Fat and Carbohydrates Differentially Alter Insulin Sensitivity During Caloric Restriction

ERIK KIRK, DOMINIC N. REEDS, BRIAN N. FINCK, MITRA S. MAYURRANJAN, BRUCE W. PATTERSON, and SAMUEL KLEIN


22 Übergewichtige (BMI = 37), randomisiert in 2 Gruppen mit hypokalorischer Diät: ≈ 1100 kcal/Tag;


• Low-Fat/High-Carb: > 180 g KH/Tag vs Low-Carb: < 50 g KH/Tag


Low-Fat/High-Carb: 65 % KH, 20 % F, 15 % P;

Low-Carb/High-Fat: 10 % KH, 75 % F, 15 % P;

Kirk E, et al. Gastroenterology 2009;136:1552-1560

Anhebung der Proteinzufuhr

Molkenprotein!

Molkenprotein und NAFLD

Effects of a whey protein supplementation on intrahepatocellular lipids in obese female patients $\,$

Murielle Bortolotti ^{A.d}, Elena Maiolo ^{A.d}, Mattia Corazza ^{A.d}, Eveline Van Dijke ^{A.d}, Philippe Schneiter ^{A.e}, Andreas Boss ^{B.d}, Guillaume Carrel ^{A.e}, Vittorio Giusti ^{C.E}, Kim-Anne La ^{A.h}, Daniel Guae Quo Chong ^{B.f}, Tania Buehler ^{B.f}, Roland Kreis ^{B.f}, Chris Boesch ^{B.f}, Luc Tappy ^{A.C.}

*Department of Clinical Research/AMSM, University of Brown, Parkins SDA, Insultypists, PO. Box 35, 3010 Bern, Switzerland *Service of Endocrisology, Diobetes and Metabolism, CMEN, TOIL Ensurings Switzerland

- 11 übergewichtige Frauen mit 60 g Molkenprotein/Tag über 4 Wochen zusätzlich zur üblichen Kost
- nach 4 Wochen Molkenprotein-Supplement:

- Leberfettgehalt: - 21 %

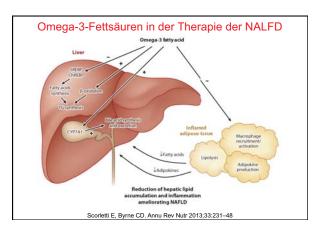
- Serum Triglyceride: - 15 %
- Serum Cholesterin: - 7 %

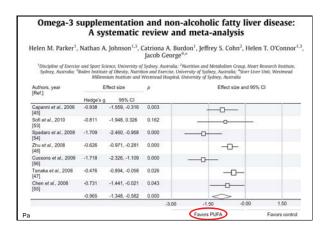
- fettfr. Körpermasse: + 4 %

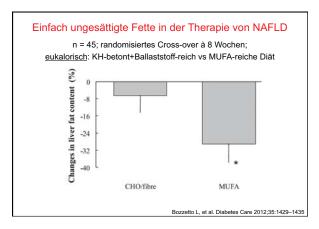
Bortolotti M, et al. Clinical Nutrition 2011;30:494-498

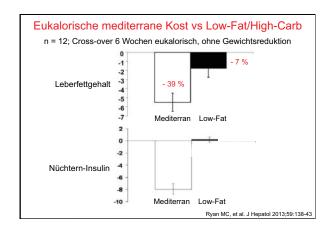
Eiweiß in der Adipositas-Therapie

Erhöhte Eiweißzufuhr bewirkt:

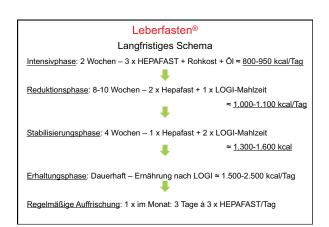

- Sättigung ↑
- Sattheit ↑
- Thermogenese ↑
- fettfreie Masse bei negativer Energiebilanz


Modifikation der Fettzufuhr


n-3 PUFA + MUFA


Leberfasten! – Ernährungstherapie der NAFLD

Omega-3-Fettsäuren


Ernährungstherapie der NAFLD Die 5 Grundprinzipien: Nährstoffspezifische Aspekte: - kalorienreduziert - Omega-3-Fettsäuren - Vitamin E - kohlenhydratreduziert - eiweißbetont - Cholin - β-Glukan - fettmodifiziert - ballaststoffreich - Inulin - Carnitin - Taurin - Resveratrol - Quercitin - Koffein - Kaffeesäure - Kurkuma

"Leberfasten" in der Therapie von NAFLD metabolischem Syndrom und Typ-2-Diabetes

Mahlzeiten-Ersatz-Konzept mit leberspezifischer Formula + kohlenhydrat-reduzierter, mediterraner Diät

Leberfasten® + LOGI in der Ernährungstherapie bei NAFLD, metabolischem Syndrom, PCO-Syndrom, Gestationsdiabetes, Typ-2-Diabetes etc. +

Leberfasten® - 2 Wochen VLCD mit 3 x täglich Meal Replacement (Hepafast® => kohlenhydratarm, proteinreich, ballaststoffreich mit Milch (1,5 % Fett) zubereitet - 780 kcal pro Tag - ergänzt mit Rohkost, Salat, stärkearmem Gemüse und 1 TL MUFA-reichem Pflanzenöl, ca. 100-150 kcal 8 Uhr: HEPAFAST® HEPAFAST® + Gedünstetes Gemüse, Suppe, Salat oder Rohkost mit Dipp Rohkost mit Dipp Rohkost mit Dipp

	Laborblatt vom	14.04.2015 geb. 30-31-31-3	Kasuistik
		\$0.03.201\$29.01.201\$22.12.2014\$8.11.2014\$1.11.2014\$7.11	Patientin 45 Jahre, BMI 27.
CREATININ HARNSYOFF	0.84 - 1.25 img/d 19.0 - 44.0 img/d	0.98 0.94 0.88 1 47.8 (+) 46.8 (+) 46.0 2	
GLUCOSE	19.0 - 44.0 mg/dl		
	74 - 106 mg/d - 55 01 140 - 250 mg/d	101 107 ++ 100 103 188 (+) 18 146 160 140 2 72 88 61 1	07 11 2014
CHOLESTERIN	140 - 250 mg/dl	17 20 18 146 180 140 2 72 88 61 1	0
TRIGLYCERIDE HDL CHÖLESTERIN KALIUM		72 88 61 1	07 44 004 4
HUL CHOLESTERIN	mg/d 3.6 - 5.4 mmg/l	42 (1) 41 (1) 41 (1)	07.11.2014
NATRIUM HRA1C	135 - 145 (mmpl)	4.4 5.1 4.8 4 141 140 144 3	92. <u>07.11.2014</u>
HBA1C			
HBA1C ALTERNATIV	28 - 42 mmol/mol 1 3.8 - 7.9 tmold 4.5 (01 4.0 - 16.0 (01	b 43,2 (+) 48,6 (+) 67,2 (+) 104,	[E] IIDAIC = 11,7 /0
HARNSAEURE	13.6 - 7.0 tmp/d	21 30 35 6 73 65 07 52	0
TEMPONYEN	14.0 - 10.0 10.1	21 30 55 52 65 65 65 65 65 65 65 65 65 65 65 65 65	Therapie: 4 Wochen intensiv Leberfasten ohne Medikament
ERYTHROZYTEN. HAEMOGLOBIN HAEMAYGRAIT	4.5-6.0 TA	7,3 6,5 9,7 5,2 6 5,5 5,5 5,4 5,2 5 16,4 15,9 15,6 15,0 H	Therapie: 4 Wochen intensiv
HAEMOGLOBIN	13.0 - 18.0 ig/dl	16.4 15.0 15.6 15.0 1 0.47 0.46 0.45 0.43 0.	0
	0.40 - 0.47 - 0.0 27.2 - 33.0 - 189/Erx	037 036 038 036 0 309 031 331 031 0 607 847 645 836 8 34 28 386 274 2	Leberfasten ohne Medikamente
MCHC		36 29. 36. 26. 27. 2 36 34. 34. 34. 35. 3 36 7 14. 45. 15.0 344 255 265 274 2	9
	80.0 - 96.0	84,7 84,1 84,5 83,9 83	
THROMBOZYTEN C REAKTIVES PROTEIN	150 450 Qd 5.5 mg/l 47 72 %	244 258 288 274 2	22 12 2014
	< 5.0 [mg/l	negativ negativ	22.12.2014
NEUTROPHILE LYMPHOZYTEN MONGZYTEN EGSINOPHILE	25 .40	57 49 63 56 - 31 38 25 45 (+)	HbA1c = 8,3 %
MONGZYTEN	12-12 %	31 38 25 45 (*)	HbA1c = 8.3 %
EOSINOPHILE	14 1%		110/110 - 0,0 /0
BASOPHILE	1<35	21 28 23 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
CALCIUM	12.20 - 2.85 mmol/l	2.33 2.31 2.30 2	ėz:
ÉISEN PHOSPHÓR ANÓRGANIS BILIROBIN GESAMY	12.5 - 32.2 surpol 1		
PHOSPHOR ANORGANIS	CH 0.81 - 1.45 immol/l	131 118 121 0 685 0.56 0.86 0.8	30.03.201 <u>5</u>
GLOM FILT RATE MORD			00.00.2010
ALKAL PHOSPHAYASE	30 - 120 (01	38 56 88 52 52 80 10277 11480 11542 134	HbA1c = 6,1 %
AMYLASE	< 100 011 4820 - 11500 001	52 52 62 4	HbA1c = 6,1 %
CHOLINESTERASE	4620 - 11500 OI < 248 OI	10277 11489 11342 1344	
LDE CHOLESTERIN DIRE	248 UII mg/d		5
GERAMT FIMEIRS	96 - 83 gl	60.5 70.5 74.5 8	3
WTAMIN D 25 OH		62,5 62,9 62,3	ÿ::
ALBOMIN ELPHO	56.4-66.8 %		
ALPH 1 GLOBUL ELPHO ALPH 2 GLOBUL ELPHO	122 110 18	77 73 85 6 6	g
	72-110 19		
BETA 2 GLOBUL ELPHO	34.68 3	5,1 4,9 5,5 5	5
GAMMA GLOBUL ELPHO	102-167 1%	15,0 15,3 13,2 1	\$C.1

Diskussionsforum zum "Leberfasten" auf:

www.logi-methode.de

im LOGI-Forum unter:
"LOGI und Leberfasten"

mehr Infos unter:

www.leberfasten.de

